82 research outputs found

    Improved Limits on Millicharged Particles Using the ArgoNeuT Experiment at Fermilab

    Full text link
    A search for millicharged particles, a simple extension of the standard model, has been performed with the ArgoNeuT detector exposed to the Neutrinos at the Main Injector beam at Fermilab. The ArgoNeuT Liquid Argon Time Projection Chamber detector enables a search for millicharged particles through the detection of visible electron recoils. We search for an event signature with two soft hits (MeV-scale energy depositions) aligned with the upstream target. For an exposure of the detector of 1.01.0 ×\times 102010^{20} protons on target, one candidate event has been observed, compatible with the expected background. This search is sensitive to millicharged particles with charges between 10−3e10^{-3}e and 10−1e10^{-1}e and with masses in the range from 0.10.1 GeV to 33 GeV. This measurement provides leading constraints on millicharged particles in this large unexplored parameter space region.Comment: Version accepted by PR

    First Measurement of Electron Neutrino Scattering Cross Section on Argon

    Get PDF
    We report the first electron neutrino cross section measurements on argon, based on data collected by the ArgoNeuT experiment running in the GeV-scale NuMI beamline at Fermilab. A flux-averaged νe+ν‾e\nu_e + \overline{\nu}_e total and a lepton angle differential cross section are extracted using 13 νe\nu_e and ν‾e\overline{\nu}_e events identified with fully-automated selection and reconstruction. We employ electromagnetic-induced shower characterization and analysis tools developed to identify νe/ν‾e\nu_e/\overline{\nu}_e-like events among complex interaction topologies present in ArgoNeuT data (⟨Eνˉe⟩=4.3\langle E_{\bar{\nu}_e} \rangle = 4.3 GeV and ⟨Eνe⟩=10.5\langle E_{\nu_e} \rangle = 10.5 GeV). The techniques are widely applicable to searches for electron-flavor appearance at short- and long-baseline using liquid argon time projection chamber technology. Notably, the data-driven studies of GeV-scale νe/ν‾e\nu_e/\overline{\nu}_e interactions presented in this Letter probe an energy regime relevant for future DUNE oscillation physics.Comment: added acknowledgement

    Design and construction of the MicroBooNE Cosmic Ray Tagger system

    Full text link
    The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking

    First measurement of the cross section for νμ\nu_\mu and νˉμ\bar{\nu}_\mu induced single charged pion production on argon using ArgoNeuT

    Full text link
    We report on the first cross section measurement of charged-current single charged pion production by neutrinos and antineutrinos on argon. This analysis was performed using the ArgoNeuT detector exposed to the NuMI beam at Fermilab. The measurements are presented as functions of muon momentum, muon angle, pion angle, and angle between muon and pion. The flux-averaged cross sections are measured to be 2.7±0.5(stat)±0.5(syst)×10−37cm2/Ar2.7\pm0.5(stat)\pm0.5(syst) \times 10^{-37} \textrm{cm}^{2}/\textrm{Ar} for neutrinos at a mean energy of 9.6 GeV and 8.4±0.9(stat)−0.8+1.0(syst)×10−38cm2/Ar8.4\pm0.9(stat)^{+1.0}_{-0.8}(syst) \times 10^{-38} \textrm{cm}^{2}/\textrm{Ar} for antineutrinos at a mean energy of 3.6 GeV with the charged pion momentum above 100 MeV/cc. The results are compared with several model predictions

    Multidifferential cross section measurements of νμ -argon quasielasticlike reactions with the MicroBooNE detector

    Get PDF
    We report on a flux-integrated multidifferential measurement of charged-current muon neutrino scattering on argon with one muon and one proton in the final state using the Booster Neutrino Beam and MicroBooNE detector at Fermi National Accelerator Laboratory. The data are studied as a function of various kinematic imbalance variables and of a neutrino energy estimator, and are compared to a number of event generator predictions. We find that the measured cross sections in different phase-space regions are sensitive to nuclear effects. Our results provide precision data to test and improve the neutrino-nucleus interaction models needed to perform high-accuracy oscillation analyses. Specific regions of phase space are identified where further model refinements are most needed

    First Double-Differential Measurement of Kinematic Imbalance in Neutrino Interactions with the MicroBooNE Detector

    Get PDF
    We report the first measurement of flux-integrated double-differential quasielasticlike neutrino-argon cross sections, which have been made using the Booster Neutrino Beam and the MicroBooNE detector at Fermi National Accelerator Laboratory. The data are presented as a function of kinematic imbalance variables which are sensitive to nuclear ground-state distributions and hadronic reinteraction processes. We find that the measured cross sections in different phase-space regions are sensitive to different nuclear effects. Therefore, they enable the impact of specific nuclear effects on the neutrino-nucleus interaction to be isolated more completely than was possible using previous single-differential cross section measurements. Our results provide precision data to help test and improve neutrino-nucleus interaction models. They further support ongoing neutrino-oscillation studies by establishing phase-space regions where precise reaction modeling has already been achieved
    • …
    corecore